Teacher notes Topic C

Forced oscillations.

A block of mass *m* is attached to a spring obeying Hooke's law with spring constant *k*.

- (a) Show that the extension of the spring at equilibrium is given by $e = \frac{mg}{k}$.
- (b) The mass is pulled a small distance x_0 below the equilibrium position and is then released. Explain why the mass will perform simple harmonic oscillations with angular frequency given by

$$\omega = \sqrt{\frac{k}{m}}.$$

- (c) Write down the equation giving the displacement of the block from equilibrium. Take the down direction to be positive.
- (d) A cardboard is attached to the block so that the oscillations are now lightly damped. The

displacement is given by $x = x_0 \sin(2\omega t + \frac{\pi}{2})$. State and explain **two** reasons why a periodic force acts on the system.

(e) The angular frequency of the periodic force is increased. State and explain the effect of this change on the amplitude of oscillations.

Answers

- (a) At equilibrium $ke = mg \Longrightarrow e = \frac{mg}{k}$.
- (b) When extended *downwards* by a distance *x* below the equilibrium position the **net** force on the block is k(e+x) mg = ke + kx mg = kx upwards. The net force is thus opposite to the

displacement and proportional to it, so SHM takes place. $ma = -kx \Rightarrow a = -\frac{k}{m}x \Rightarrow \omega^2 = \frac{k}{m}$.

(c)
$$x = x_0 \sin(\omega t + \frac{\pi}{2})$$
.

(d)

- If there was no external periodic force acting the amplitude would be decreasing exponentially but here it is constant.
- The angular frequency of oscillations is 2ω and is different from the natural frequency ω indicating that there is an external force of frequency 2ω .
- (e) Recall that the variation of the amplitude with external force angular frequency is given by:

Since we now have a force with frequency 2ω , increasing the frequency further means the amplitude will decrease.